Calcium currents in GH3 cultured pituitary cells under whole-cell voltage-clamp: inhibition by voltage-dependent potassium currents.
نویسندگان
چکیده
To isolate inward Ca2+ currents in GH3 rat pituitary cells, an inward Na+ current as well as two outward K+ currents, a transient voltage-dependent current (IKV) and a slowly rising Ca2+-activated current (IKCa), must be suppressed. Blockage of these outward currents, usually achieved by replacement of intracellular K+ with Cs+, reveals sustained inward currents. Selective blockage of either K+ current can be accomplished in the presence of intracellular K+ by use of quaternary ammonium ions. When IKCa and Na+ currents are blocked, the net current elicited by stepping the membrane potential (Vm) from -60 to 0 mV is inward first, becomes outward and peaks in 10-30 msec, and finally becomes inward again. Under this condition, in which both IKV and Ca2+ currents should be present throughout the duration of the voltage step, the Ca2+ current was not detected at the time of peak outward current. That is, plots of peak outward current vs. Vm are monotonic and are not modified by nisoldipine or low external Ca2+ as would be expected if Ca2+ currents were present. However, similar plots at times other than at peak current are not monotonic and are altered by nisoldipine or low Ca2+ (i.e., inward currents decrease and plots become monotonic). When K+ channels are first inactivated by holding Vm at -30 mV, a sustained Ca2+ current is always observed upon stepping Vm to 0 mV. Furthermore, substitution of Ba2+ for Ca2+ causes blockage of IKV and inhibition of this current results in inward Ba2+ currents with square wave kinetics. These data indicate that the Ca2+ current is completely inhibited at peak outward IKV and that Ca2+ conductance is progressively disinhibited as the transient K+ current declines due to channel inactivation. This suggests that in GH3 cells Ca2+ channels are regulated by IKV.
منابع مشابه
Ionic currents in two strains of rat anterior pituitary tumor cells
The ionic conductance mechanisms underlying action potential behavior in GH3 and GH4/C1 rat pituitary tumor cell lines were identified and characterized using a patch electrode voltage-clamp technique. Voltage-dependent sodium, calcium, and potassium currents and calcium-activated potassium currents were present in the GH3 cells. GH4/C1 cells possess much less sodium current, less voltage-depen...
متن کاملPandinus imperator scorpion venom blocks voltage-gated potassium channels in GH3 cells
We examined the effects of Pandinus imperator scorpion venom on voltage-gated potassium channels in cultured clonal rat anterior pituitary cells (GH3 cells) using the gigohm-seal voltage-clamp method in the whole-cell configuration. We found that Pandinus venom blocks the voltage-gated potassium channels of GH3 cells in a voltage-dependent and dose-dependent manner. Crude venom in concentration...
متن کاملInfluence of sodium-calcium exchange on calcium current rundown and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording
The whole cell patch-clamp technique, in both standard and perforated patch configurations, was used to study the influence of Na+-Ca++ exchange on rundown of voltage-gated Ca++ currents and on the duration of tail currents mediated by Ca++-dependent Cl- channels. Ca++ currents were studied in GH3 pituitary cells; Ca++-dependent Cl- currents were studied in AtT-20 pituitary cells. Na+-Ca++ exch...
متن کاملExistence of a delayed rectifier K+ current in the membrane of human embryonic stem cel
Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 82 4 شماره
صفحات -
تاریخ انتشار 1985